Machine Learning and Deep Learning – Know the Difference

Deep learning is a subset or an exciting branch of machine learning (ML) which uses similar ML algorithms and uses lots of data to educate deep neural networks so, as to attain better accuracy.

    Difference Between Deep Learning and Machine Learning
    Published By - Kelsey Taylor

    What exactly is Machine learning and Deep learning?

    Machine Learning:

    Machine learning is a subset of AI that focuses on the design of a system. It can learn and make decisions or predictions based on the experience which is data in case of machines.

    It enables a computer to act and make data-driven decisions rather than being explicitly programmed to carry out a specific task.

    These programs are designed to learn and improve over time when exposed to new data.

    For example, while shopping online and checking for a product, you must have come across or would have noticed a line saying “the people who bought this, also bought…” giving you recommendations.

    Moreover, have you ever noticed that it also suggests for a product similar to what you’re looking for? How are they able to do this? The answer is Machine Learning.

    Deep Learning:

    Deep learning is a subset or an exciting branch of machine learning (ML) which uses similar ML algorithms and uses lots of data to educate deep neural networks so, as to attain better accuracy.

    Deep learning, with Artificial Intelligence, is uncovering hidden techniques and opportunities in the field of healthcare, helps doctors in surgical complications, drug development, patients and record mining. It furthermore gives better assistance in voice search and image recognition.

    Nowadays, Voice search tool is in nearly every smartphone. Google Now, Apple’s Siri, Microsoft Cortana are some applications of voice-activated assistance which runs on deep learning.

    Let’s review the differences between the two:

    Machine learning uses algorithms to analyse data, then they learn from that data and make informed decisions on the basis of what it has learned.

    Whereas, deep learning learns through an artificial neural network which is why it is considered as more human-like. It doesn’t require a human programmer to tell them what to do, they learn and make confident decisions on its own.

    With that been said let’s see how Machine and Deep Learning work?

    Machine Learning uses a type of automated algorithms that acquires a piece of knowledge to predict future decisions using the data fed to it. These various algorithms are directed by the analysts to inspect the distinct variables in the data set.

    So basically, there are three types of learning algorithms:

    Supervised ML Algorithms: It makes predictions. Afterwards, these algorithms search for patterns within the value labels, allotted to the data points.

    Unsupervised ML Algorithms: Labels do not correlate with data points. Also, these machine learning algorithms classify the data into a group of clusters. Furthermore, it describes and makes complex data look simple and classified for analysis.

    Reinforcement ML Algorithms: These algorithms are employed to choose an action, based on respective data points. This algorithm can furthermore continue to change its plan of action to learn better.

    Nonetheless, a deep learning model is designed to parse data with a structure similar to how a human would figure out conclusions.

    To attain that, deep learning uses an arrangement of algorithm known as an “artificial neural network”.

    The artificial neural network (ANN) mimic the biological neural network of the human brain and gets inspiration from the function and structure of a human brain.

    Besides, there are numerous layers to process features namely the input Layer, the output Layer and the Hidden Layer.

    Also, typically, each layer extracts a chunk of valuable information. For instance, one neural net processes pictures for steering a self-driving car then each and every layer would process something unique.

    You May Also Like to Read:
    5 Applications of Federated Learning

    Python vs. Julia: What’s the Difference between the Two?

    Kelsey manages Marketing and Operations at HiTechNectar since 2010. She holds a Master’s degree in Business Administration and Management. A tech fanatic and an author at HiTechNectar, Kelsey covers a wide array of topics including the latest IT trends, events and more. Cloud computing, marketing, data analytics and IoT are some of the subjects that she likes to write about.

      We send you the latest trends and best practice tips for online customer engagement:

      Receive Updates:   Daily    Weekly

      By completing and submitting this form, you understand and agree to HiTechNectar processing your acquired contact information as described in our privacy policy.

      We hate spams too, you can unsubscribe at any time.

      Translate »
      Social media & sharing icons powered by UltimatelySocial